

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

PGM 5546 Time: 3 Hrs Statistical Inference and Stochastic processes Marks: 75

Answer any **FIVE** questions.

 $5 \times 15 = 75$

- 1) State Likelihood Test, Wald Type Test, Score Test. Also apply the above tests for the Laplace Location Model.
- 2) State and prove Rao-Cramer Lower bound. Also derive the information matrix.
- 3) Write down the six Regularity conditions. Also assume $X_1, ..., X_n$ are iid with pdf $f(x; \theta_0)$ for $\theta_0 \in \Omega$ such that the regularity conditions (R0) to (R5) are satisfied. Suppose further that the Fisher information satisfies $0 < I(\theta_0) < \infty$. Then prove any consistent sequence of solutions of the mle equations satisfies $\sqrt{n}(\hat{\theta}_n \theta_0)$ converges in distribution to $N(0, 1/I(\theta))$.
- 4) Define best critical region. Also State and prove Neyman-Pearson theorem.
- 5) (a) Define sufficient statistic for a parameter θ .
 - (b) State and prove Neyman (Factorization) theorem
- 6) Explain Polya's urn model in detail.
- 7) (a) Consider a communication system which transmits the two digits 0 and 1 through several stages. Let $\{X_n, n \ge 1\}$ be the digit leaving nth stage of system and X_0 be the digit entering the first stage (leaving the 0th stage). At each stage there is a constant probability q that the digit which enters will be transmitted unchanged (the digit will remain unchanged when it leaves), and probability p otherwise (the digit changes when it leaves) p+q=1. Convert the problem into a Markov chain and give solution.
 - (b) For the two-state Markov chain $P = \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}$, 0 < a, b < 1. Prove that $\lim_{n \to \infty} p_{i1} = \frac{b}{a+b}$ and $\lim_{n \to \infty} p_{i2} = \frac{a}{a+b}$, i = 1,2.
