

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 2434/ 2553/ COM/CME – BUSINESS MATHEMATICS

Max: 75 Marks

Time : 3 Hours

Answer Any FIVE Questions $(5 \times 15 = 75 \text{ Marks})$

1. Solve the given system of equation by Cramer's rule

$$x + 2y - z = 2$$

$$3x - 4y + 2z = 1$$

$$-x + 3y - z = 4$$

2. (i) If $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ then find its inverse using adjoint matrix method $\begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 & -1 & -7 \end{bmatrix} \begin{bmatrix} 3 & 6 & 0 & -6 \end{bmatrix}$

(ii) If
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & -3 \\ -5 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 3 & 1 & 7 \\ -2 & 1 & 3 & 4 \\ 3 & 2 & 1 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & 0 & 0 & 0 \\ -1 & 2 & 4 & 5 \\ 4 & 3 & 2 & 3 \end{bmatrix}$,

then prove that AB = AC

3. (i) Examine the function $y = 2x^2 - x^3 + 5$ for maximum and minimum

(ii) Find
$$\frac{dy}{dx}$$
 for (a) $y = \frac{(x-1)^{\frac{3}{2}}(x-3)^{\frac{1}{2}}}{(x-2)^2}$ (b) $y = e^{x^2 + 5x + 7}$ (c) $y^x = x^y$

4. Solve the Transportation problem by using MODI method

5. Solve the following Rectangular Game

3	12	8	18	4
4	8	7	13	-1

- 6. (i) The demand and supply functions under pure competitions are y = 16 x² and y = 2x² + 4. Find the consumer's surplus and producer's surplus.
 (ii) Evaluate ∫ ^{3x+4}/_{(x-2)(x+3)} dx using method of partial fractions.
- 7. Solve the Assignment Problem

		M1	M2	M3	M4	M5
Jobs	J1	9	22	58	11	19
	J2	43	78	72	50	63
	J3	41	28	91	37	45
	J4	74	42	27	49	39
	J5	36	11	57	22	25
		1				

Machines