

MAT/MAS 2442 / 2512	TIME: 3 HRS
LINEAR ALGEBRA AND LATTICES /ALGEBRA III	MAX: 75

ANSWER ANY FIVEQUESTION:

- 1. Let *V* be the vector space of all functions from $R \to R$. Let $V_e = \{f \in V | f \text{ is even}\}$, $V_0 = \{f \in V | f \text{ is odd}\}$. Prove that V_e and V_0 are subspaces of *V* and $V = V_e \oplus V_0$..
- 2. Let V be a vector space over F and W a subspace of V. Let V/W = {W + v/v ∈ V}. Prove that V/W is a vector space over F under the following operations.
 (i) (W + v₁) + (W + v₂) = W + v₁ + v₂
 (ii) α(W + v₁) = W + αv₁.

 $5 \times 15 = 75$

- 3. Let *V* be a vector space over a field *F*. Let $S,T \subseteq V$ then prove that the following: (i) $S \subseteq T \Longrightarrow L(S) \subseteq L(T)$ (ii) $L(S \cup T) = L(S) + L(T)$
 - (iii) L(S) = S iff S is a subspace of V
- 4. Let *V* be a finite dimensional vector space over a field *F*. Let *A* and *B* be subspace of *V*. Then prove that $\dim(A + B) = \dim A + \dim B \dim(A \cap B)$.
- 5. State and prove the fundamental theorem of homomorphism for groups.
- 6. State and prove Schwartz's and triangle inequality
- 7. Prove that every finite dimensional inner product space has an orthonormal basis.
