

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March, 2021

CHE 2516/ CHS 2516		PHYSICAL CHEMISTRY-III M	lax: 75 mks Time: 2 hrs
SECTION A		Answer ANY FIVE questions (5 X 15 = 75)
1.	(a) Derive and explain Debye-Huckel limiting law.		
	 (b) Calculate the ionic strend 0.1 molal KCl. (c) Calculate the ionic mobility of 25% C is (1) 	ngth of a solution containing 0.2 molal K_2SO_4 and bility of Ag ⁺ . The molar ionic conductance at infinite	(3)
	diffution at 25° C is of	.92 x 10 * Sm ² mol ²	(2)
2.	(a) Explain corrosion and i(b) What are electrolyte co	nhibition of corrosion. ncentration cells? Discuss concentration cell with trans	(5) fer. (2+8)
3.	(a) What are the difference	es between order and molecularity?	(3)
	(b) Derive Eyring equation	1.	(6)
	(c) Explain any two metho	ds to determine the order of a reaction.	(4)
	(d) Calculate the activation	n energy of a reaction whose rate constant is tripled	
	by a 10°C rise in tempe	erature in the vicinity of 27°C.	(2)
4.	(a) Derive Bronsted – Bjer	rum equation.	(7)
	(b) What are the characteri	stics of enzyme catalysis.	(5)
	(c) Write short notes on: (i)) negative catalysis (ii) autocatalysis.	(3)
5.	 (a) Define buffer. Derive H (b) Obtain degree of hydro (c) Illustrate the application i) Determination of solution (d) Calculate hydrogen ion 	Henderson's equation to calculate pH of a buffer solution lysis for the salt of strong acid and weak base. In of concept of solubility product in the following operation bility of sparingly soluble salts ii) salting out of soap. In concentration of a solution whose pH is 5.4.	n. (4) (3) ations: (3.5+3.5) (1)
6	(a) List down the vertices of	andiantiana of EME measurements	(2)
0.	(a) East down the various applications of Eight measurements. (2) (b) For Fe. Fe ²⁺ (0 1M) I Cd ²⁺ (0 001 M). Cd (F ^o cdp / cd = - 0 40 & F ^o E ₂₂ / E ₂ = - 0.44 at 25°C)		
	(c) For Fe, Fe⁻ (0.111) Fe⁻(c) Calculate the pH before buffer solution that is 0	and calculate E° and K for the above cell. e and after the addition of 0.01 mole of NaOH to 1 litre 0.1 M in acetic acid and 0.1 M in sodium acetate. The	(5) of a
	dissociation constant of	f acetic acid at room temperature is 1.75×10^{-5} .	(5)
	(d) Derive integrated Arrhe	enius equation.	(3)
7.	 (a) What is titration curve? acid against strong base (b) Calculate the pH & pO 0.2 M UCl with 50 ml 	⁹ Draw it. Explain the same for the titration of strong e. H of an aqueous solution obtained by mixing 25 ml of of 0.25 M. NaOLL $K_{\rm c} = 10^{-14} {\rm ms}^{12} {\rm dm}^{-6}$ at 25%	(6)
	(c) For the first order reaction	ion at 130° C, the E ₂ is $108.4 \text{ kJ mol}^{-1}$ and the	(5)
	rate constant is 9.12X1	0^{-4} s^{-1} . Calculate $(\Delta S^{\circ})^{\#}$.	(4)