

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

PGM 4434 REAL ANALYSIS-II

Time: 3 Hrs

Marks: 75

Answer any FIVE questions

<u>5x15=75</u>

- 1. Assume that α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b]. Let f be a bounded real function on [a, b]. Then $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$ and $\int_a^b f d\alpha = \int_a^b f(x)\alpha'(x)dx$.
- 2. If γ' is continuous on [a, b], then γ is rectifiable and $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$.
- 3. Suppose $\{f_n\}$ is a sequence of functions differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a, b] then $\{f_n\}$ converges uniformly on [a, b] to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x)$ ($a \le x \le b$).
- 4. If *f* is a continuous complex function on [a, b], then prove that there exists a sequence of polynomials P_n such that $\lim_{n \to \infty} P_n(x) = f(x)$ uniformly on [a, b].
- 5. State and prove Parseval's theorem.
- 6. (a) Let $\{\phi_n\}$ be orthonormal on [a, b]. Let $s_n(x) = \sum_{m=1}^n c_m \phi_m(x)$ be the n^{th} partial sum of the Fourier series of f and suppose $t_n(x) = \sum_{m=1}^n \gamma_m \phi_m(x)$ then $\int_{a}^{b} |f x|^2 dx \le \int_{a}^{b} |f t|^2 dx$ and the equality holds iff x = c.
 - ∫_a^b|f s_n|²dx ≤ ∫_a^b|f t_n|²dx and the equality holds iff γ_m = c_m.
 (b) If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only one x ∈ X such that φ(x) = x.
- 7. State and prove inverse function theorem.