

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 3444	Time: 3hrs
Operations Research	Max: 75marks

Answer any FIVE questions:

- (a) Solve by graphical method: Find the minimum value of Z = 7y₁ + 8y₂ subject to the constraints: 3y₁ + y₂ ≥ 8, y₁ + 3y₂ ≥ 11;y₁,y₂ ≥ 0.
 (b) Use Simplex method to Maximize Z = 5x₁ + 3x₂ subject to the constraints: x₁ + x₂ ≤ 2, 5x₁ + 2x₂ ≤ 10, 3x₁ + 8x₂ ≤ 12; x₁,x₂ ≥ 0.
- 2. Solve the following linear programming problem by dual simplex method: Minimize $Z = 2x_1 + 9x_2 + 24x_3 + 8x_4 + 5x_5$ subject to the constraints: $x_1 + x_2 + 2x_3 - x_5 - x_6 = 1$, $-2x_1 + x_3 + x_4 + x_5 - x_7 = 2$, $x_j \ge 0$; j =1, 2...7.
- 3. The head of the department has five jobs A, B, C, D, E and five sub-ordinates V, W, X, Y and Z. The number of hours each man would take to perform each job is as follows:

	V	W	X	Y	Ζ	
Α	3	5 7 12 5 10	10	15	8]	
В	4	7	15	18	8	
С	8	12	20	20	12	
D	5	5	8	10	6	
Ε	_10	10	15	25	10	

How should the jobs be allocated to minimize the total time?

- 4. Use two-phase simplex method to Maximize $Z = 5x_1 + 8x_2$ subject to the constraints: $3x_1 + 2x_2 \ge 3$, $x_1 + 4x_2 \ge 4$, $x_1 + x_2 \le 5$; $x_1, x_2 \ge 0$.
- 5. Use Revised simplex method to solve the following L.P.P., Maximize $Z = 3x_1 + 2x_2 + 5x_3$ subject to the constraints: $x_1 + 2x_2 + x_3 \le 430$, $3x_1 + 2x_3 \le 460$, $x_1 + 4x_2 \le 420$; $x_1, x_2, x_3 \ge 0$
- 6. Solve the following transportation problem:

Source
$$\begin{array}{ccccc} & Destination \\ 1 & 2 & 3 & 4 \\ 1 & \begin{pmatrix} 21 & 16 & 25 & 13 \\ 17 & 18 & 14 & 23 \\ 32 & 27 & 18 & 41 \end{pmatrix} \begin{array}{c} 11 \\ 13 \\ 19 \\ 6 & 10 & 12 & 15 \end{array}$$
 Availability

5x15=75

7. Solve the following game:

		Player B						
	Ι	II	III	IV	V	/ VI		
Player A								
1	4	2	0	2	1	1		
2	4	3	1	2 3	2	2		
3	4	3	7	-5	1	2		
4	4	3	4	-1 - 2	2	2		
5	4	3	3	-2	2	2		
