THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 2516

Time: 3 hours

VECTOR CALCULUS & TRIGONOMETRY

PART-A

Answer any FIVE Questions:

1. (i) Show that $|\overrightarrow{a \times b}|^2 + |\overrightarrow{a \cdot b}|^2 = |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$

(ii) Show that the volume V of a pyramid of which the vertex is at a given point (x, y, z) and the base of a triangle formed by joining three given points (a, 0, 0), (0, b, 0), (0, 0, c) in the rectangular coordinate axes is $V = \frac{1}{6} \operatorname{abc} \left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1\right)$.

2. (i) $\vec{v} = \vec{w} \times \vec{r}$, prove that $\vec{w} = \frac{1}{2} curl \vec{v}$, where \vec{w} is a constant vector and \vec{r} is the position vector.

(ii) Determine f(r) so that the vector $\{f(r)\vec{r}\}$ is both solenoidal and irroational.

3. (i) Prove that $\mathbf{F} = (y^2 \cos x + z^3)\vec{\imath} + (2y \sin x - 4)\vec{\jmath} + (3xz^2 + 2)\vec{k}$ is irrotational and find its scalar potential.

(ii) Prove that $v = r^n r$ irrotational. Find n when it is also solenoidal.

- 4. The necessary and sufficient condition that the line integral $\int_{A}^{B} \mathbf{F} \cdot d\mathbf{r}$ be independent of the path is that **F** is the gradient of some scalar function φ .
- 5. (i) Evaluate $\iiint \vec{F} \cdot dV$, where $\vec{F} = 2xz \vec{i} x \vec{j} + y^2 \vec{k}$ and V is the volume enclosed by the cylinder $x^2 + y^2 = a^2$ between the plane z = 0 and z = c.

(ii) Verify the Divergence theorem for the function $\vec{F} = 2xz \,\vec{i} + yz \,\vec{j} + z^2 \vec{k}$ over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$.

6. (i) Solve the equation $\sin 7\theta - \sin \theta = \sin 3\theta$.

Max marks: 75

 $(5 \times 15 = 75 \text{marks})$

(ii) Express $\cos 8\theta$ in terms of $\sin \theta$.

- 7. (i) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + p = 0$, prove that $\tan^{-1} \alpha + \tan^{-1} \beta + \tan^{-1} \gamma = n\pi$ radians except q = 1.
 - (ii) Prove that the equation $\frac{ah}{\cos\theta} \frac{bk}{\sin\theta} = a^2 b^2$ has four roots and that the sum of the four values of θ which satisfy it is equal to an odd multiple of π radians.