THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2^{nd} Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 1412		Analysis - I	MAX: 75 marks
			TIME: 3 hours
Answer Any FIVE of the following questions			5 ×15 = 75
1.	(i) State and prov (ii) Prove that co	ve Archimedean property of R. untable union of countable set is	countable.
2.	If $\{S_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequences of real numbers, if $c \in R$, and if $\lim_{n \to \infty} S_n = L$ and		
	$\lim_{n \to \infty} t_n = M \text{ then}$	prove that	
	(i) $\lim_{n \to \infty} (S_n +$	$(t_n) = L + M$	
	(ii) $\lim_{n \to \infty} c S_n$	= cL	
3.	(i) If $\{S_n\}_{n=1}^{\infty}$ is	a sequence of real numbers then	prove that
	$\lim_{n \to \infty} \inf S_n \le \lim_{n \to \infty}$	$sup S_n$.	
	(ii) Prove that an	y convergent sequence is a Caucl	hy sequence.
4.	State and prove N	Nested interval theorem.	
5	If $\{a_i\}^{\infty}$, is a set	quence of positive numbers such	that (i) $a_1 > a_2 > \cdots > a_n > \cdots$

- 5. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that (i) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \dots$ (ii) $\lim_{n \to \infty} a_n = 0$ then prove that $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.
- 6. State and prove comparison test for series .
- 7. (i) If $\sum_{n=1}^{\infty} a_n$ converges absolutely then prove that $\sum_{n=1}^{\infty} a_n$ converges. (ii) Test the convergence of the series $\sum \frac{2^n n!}{n^n}$.