

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

DISCRETE MATHEMATICS

MAS 1434 / 1556 / COS

TIME: 2 Hour TOTAL: 75 Marks

PART A

Answer any FIVE Questions:

- 1. Construct the truth table for $(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R)$. Also check whether it is a tautology or contradiction.
- 2. (A). Obtain PDNF of $P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$. (B). Obtain PCNF of $(\neg P \to R) \land (Q \rightleftharpoons P)$.
- 3. (A). Let a relation R be defined on the set of all real numbers by if x, y are positive integers, xRy ⇔ x ≡ y (mod m). Show that the relation R is an equivalence relation.
 (B). If A = {c, d}, B = {1,2}, C = {2,3}, then find A × (B ∪ C), (A × B) ∪ (A × C), A × (B ∩ C), (A × B) ∩ (A × C).
- 4. In a survey of 100 students, it was found that 40 studied Mathematics, 64 studied Physics, 35 studied Chemistry, 1 studied all the three subjects, 25 studied Mathematics and Physics, 3 studied Mathematics and Chemistry and 20 studied Physics and Chemistry. Find the number of students who studied chemistry only and the number who studied none of these subjects.
- 5. Let G be the set of all matrices of the form $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ where $x \in R^*$. Then prove that G is an abelian group under matrix multiplication.
- **6.** Explain the types of grammars with an example.
- 7. A) Let $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_1\})$ be a finite automaton where δ is given by $\delta(q_0, a) = q_1, \ \delta(q_0, b) = q_2, \ \delta(q_1, a) = q_3, \ \delta(q_1, b) = q_0, \ \delta(q_2, a) = q_2, \ \delta(q_2, b) = q_2, \ \delta(q_3, a) = q_2, \ \delta(q_3, b) = q_2.$
 - (i) Represent M by its state table and state diagram.
 - (ii) Which of the following strings are accepted by *ababa*, *aabba*, *aaab*.
 - B) Draw the state diagram representing the NFA M is given by

 $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}) \text{ where } \delta \text{ is }$

δ	а	b
q_0	q_{0} , q_{1}	q_{0}, q_{2}
q_1	q_3	-
q_2	-	q_3
q_3	q_3	q_3

Also find $\hat{\delta}(q_0, baab)$ for the given NFA

 $5 \times 15 = 75$