

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

Optimization Technique

Max:75mks

Time:3hours

Answer any five questions

5*15=75

1. Solve L.P.P Max Z = 50x + 18y s.t $2x+y \le 100$; $x + Y \le 80$.x, $y \ge 0$

Using Graphical method.

- 2. Solve L.P.P Max z=4x+10y s.t $2x+y\leq50$; $2x+5y\leq100$ and $2x+3y\leq90$ and $x,y\geq0$ By Simplex method.
- 3. Solve the L.P.P Minimize $Z = 3x_1 + x_2$ Subject to constraints $4x_1 + x_2 = 4$; $5x_1 + 3x_2 \ge 7$, $3x_1 + 2x_2 \le 6$ where x_1 , $x_2 \ge 0$ by Big-M method
- 4. Solve the L.P.P MINIMIZE: Z = 3 X1 + 2 X2 subject to 2 X1 + 1 X2 \leq 2 ; 3 X1 + 4 X2 \geq 12 and x,y \geq 0. By Two-Phase method.
- 5. Solve the T.P.P

	W1	W2	W3	W4	W5	Supply
F1	13	9	15	10	12	40
F2	11	10	12	12	9	10
F3	12	9	11	12	9	20
F4	13	12	13	12	10	10
Demand	12	15	20	15	18	

6. Obtain i.critical path ii. Project duration iii.project variance

	IMMEDIATE	OPTIMISTIC	MOST	PESSIMISTIC
ACTIVITY	PREDECESSOR	TIME (o)	PROBABLE	TIME (p)
			TIME (m)	
А	-	4	5	6
В	-	6	8	10
С	А	6	6	6

D	В	3	4	5
E	В	2	3	4
F	C,D	8	10	12
G	Е	6	7	8
Н	C,D	12	13	20
Ι	F,G	10	12	14

7. Arrival s at a telephone booth are considered to be Poisson with an average time Of 10 minutes between arrival and the next. The length of a phone call is Assumed to be distributed exponential, with mean 3 minutes.

i.What is the probability that a person arriving at the booth wil

have to wait

ii. What is the average length of the queue that form from time to

time?