

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT 2632 LINEAR ALGEBRA AND LATTICES 7

75 Marks

Answer any FIVE Questions

5 X 15 = 75

- 1. (a) Let V be a vector space over a field F and S be a non-empty subset of V. Then prove that
 - (i) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$
 - (ii) $L(S\cup T) = L(S) + L(T)$
 - (iii) L(S) = S iff S is a subspace of V

(b) Let V be a vector space over a field F. Let $S = \{ v_1, v_2, \dots, v_n \}$ and L(S) = W. Prove that there exists a linearly independent subset S' of S such that L(S') = W

2. (a) Prove that $S = \{v_1, v_2, \dots, v_n\}$ is a linearly dependent vectors iff there exists a vector v_k such that it can be written as a linear combination of the preceding vectors v_1, v_2, \dots, v_{k-1} .

(**b**) Let V be a vector space over a field F, S = { v_1, v_2, \dots, v_n } span V. Let S' =

 $\{ w_1, w_2, \dots, w_n \}$ be a linearly independent, prove that $m \le n$.

3. (a) Let V be a finite dimensional vector space over a field F. Let

 $S = \{v_1, v_2, \dots, v_n\} \subseteq V$. Prove that S is a basis iff S is a maximal linearly independent set.

(b) Let V be a finite dimensional vector space over a field F. Let A and B be subspaces of the vector space V. Then prove that dim $(A+B) = \dim (A) + \dim (B) - \dim (A \cap B)$

- 4. (a) Prove that every finite dimensional inner product space as an orthonormal basis.
 - (b) Let W_1 and W_2 be subspaces of a finite dimensional inner product space. Prove that
 - (i) $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$
 - (ii) $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$
- 5. Starting with the basis $\{1, x, x^2\}$ obtain the orthonormal basis for the Vector space of all polynomials of degree ≤ 2 together with zero polynomial and inner product given by

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{-1}^{1} f(x) \mathbf{g}(x) \mathrm{d}x.$$

- 6. Prove that an isomorphism from a finite dimensional vector space takes a basis onto a basis.
- 7. (a) Let L be a non-empty set with two binary operations \land and \lor such that it satisfies idempotent, commutative, associative and absorption laws. Prove that it is a lattice under suitable order \leq in L where $a \land b = glb(a,b)$ and $a \lor b = lub(a,b)$.

(b) Prove that in a lattice L, $L_5 : a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and $L_5 : a \land (b \lor c) = (a \land b) \lor (a \land c)$ are equivalent.