

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT 152

Max: 75 marks

Foundation Mathematics III

Time: 3 hrs

Answer any five questions: $5 \times 15 = 75$ marks

- 1. a) Derive a reduction formula for $\int \sin^m x \cos^n x \, dx$ where *m*, *n* being positive integers.
 - b) Evaluate $\int x^3 \cos 2x \, dx$.
- 2. a) By changing the order of integration, evaluate $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dx dy$.

b) Find the area of the surface of the sphere of radius r.

- 3. a) Show that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. b) Evaluate $\int_0^\infty e^{-x^2} dx$.
- 4. Show that the straight lines whose direction cosines are given by al + bm + cn = 0, fmn + gnl + hlm = 0 are perpendicular if $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$ and parallel if $\sqrt{af} + \sqrt{bg} + \sqrt{ch} = 0$.
- a) Show that the origin lies in the acute angle between the polanes x+2y+2z=9, 4x-3y+12z+13=0. Find the planes bisecting the angles between them and point out which bisects the obtuse angle.

b) Find the shortest distance between the lines

$$\frac{x-3}{-1} = \frac{y-4}{2} = \frac{(z+2)}{1}; \frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}.$$

- 6. a) Determine f(r) so that the vector {f(r)r} is both solenoidal and irrotational.
 b) Prove that F = (y²cosx + z³)i + (2ysinx 4)j + (3xz² + 2)k is irrotational and find its scalar potential.
- 7. Verify the Gauss divergence theorem for the function $\mathbf{F} = 2xz\mathbf{i} + yz\mathbf{j} + z^2\mathbf{k}$ over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$.