THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 2514	Analysis - III	MAX: 75 marks
		TIME: 3 hours
Answer Any FIVE of the following questions		5 ×15 = 75

1. Let *f* be a bounded function on the closed bounded interval [a, b]. Prove that $f \in \Re[a, b]$ iff *f* is continuous at almost every point in [a, b]

2. If $f \in \mathfrak{R}[a, b]$, $g \in \mathfrak{R}[a, b]$ then prove that $f + g \in \mathfrak{R}[a, b]$ and $\int_a^b f + g = \int_a^b f + \int_a^b g$.

3. If *f* is continuous function on the closed bounded interval [a, b] and if f'(x) exists for all $x \in (a, b)$ prove that there exists $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

- 4. State and prove Taylor's formula with Integral and Lagrange form of the remainder.
- 5. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real valued function on a set E. Prove that $\{f_n\}_{n=1}^{\infty}$ is Uniformly convergent to E iff given $\varepsilon > 0$, there exists $N \in I$ such that $|f_m(x) f_n(x)| < \varepsilon$, $m, n \ge N, x \in I$.
- 6. State and prove Dini's theorem for sequence.
- 7. (i) state and prove Weierstrass M-test. (ii) Find the radius of convergence for the series $\sum \frac{n+1}{(n+1)(n+2)}$.