

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS	2444/2604/234/254/2634 Real Analysis - II	MAX: 75 marks
		TIME: 3 hours
Answer Any	FIVE of the following questions	5 × 15 = 75
1. Let ((M, d) be a metric space. Let A, B \subseteq M. Prove that	
(i)	A is open iff $A = Int A$	
(ii)	Int A = Union of all open sets contained in A	
(iii)	Int A is an open subset of A and if B is any other open set contained in A then	
	$B \subseteq Int A.$	
(iv)	$A \subseteq B \Longrightarrow Int A \subseteq Int B$	
(v)	$Int(A \cap B) = IntA \cap Int B$	
(vi)	$Int(A \cup B) \supseteq IntA \cup Int B$	

- 3. State and prove Heine Borel theorem.
- 4. Let *f* be a bounded function on the closed bounded interval [a, b]. Prove that $f \in \Re[a, b]$ iff *f* is continuous at almost every point in [a, b]
- 5. State and prove Dini's theorem for sequence.
- 6. State and prove Weierstrass M test .
- 7. Obtain the Fourier series for $f(x) = x x^2$ in $-\pi < x < \pi$. Hence prove that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.