

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

PGM 5542 /5432/5442	MAX: 75 MARKS
FUNCTIONAL ANALYSIS	TIME: 3 HOURS
ANSWER ANY 5 QUESTIONS	(5 x 15 =75)

- Prove that the following are equivalent in a normed linear space X.
 i. Every closed and bounded subset of X is compact.
 ii. The closed unit ball in X is compact.
 iii. X is finite dimensional.
- 2) Let X be a normed linear spaces over K, E be a non empty convex open subset of X and Y be a sub space of X such that $E \cap Y = \phi$. Prove that there is a closed hyper space Z of X such that $Y \subset Z$ and $E \cap Z = \phi$. Consequently there is some $f \in X$ such that f(x) = 0 for all $x \in Y$ but $\operatorname{Re} f(x) \neq 0$ for all x in E.
- 3) a) Prove that a normed space is Banach iff every absolutely summable series in it is summable

b) Prove that a Banach space cannot have a denumerable basis.

4) a)State and prove uniform boundedness principle.
b) Let X be a Banach space and Y be a normed space , F_n ∈ BL(X,Y) such that (F_n(x)) converges in Y for every x in X Define . F(x) = Lim_{n→∞}F_n(x) for each x in X.

Prove that if E is totally bounded in X, the convergence above is uniform.

- 5) State Riesz representation theorem.
- 6) Let $\{x_n\}$ be a sequence in a Hilbert space H. Then prove the following.

a) $x_n \to x$ iff $x_n \xrightarrow{w} x$ and $LimSup_{n\to\infty} ||x_n|| \le ||x||$.

b) If $\{x_n\}$ is bounded, then it has a weak convergent subsequence.

7) Prove that a subset of a Hilbert space is weak bounded iff it is bonded.