

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

PGM 4432

ALGEBRA-II

75 Marks

5 X 15 = 75

Answer any FIVE Questions

- 1. If L is a finite extension of F and if K is a subfield of L which contains F, then prove that [K:F] | [L:F].
- 2. If p(x) is a polynomial in F[x] of degree $n \ge 1$ and is irreducible over F, then prove that there is an extension E of F, such that [E : F] = n, in which p(x) has a root.
- 3. Prove that K is a normal extension of F iff K is the splitting field of some polynomial over F.
- 4. State and prove fundamental theorem of Galois theory.
- 5. Let V be an n dimensional vector space over the field F, and let W be an m dimensional vector space over F. Then prove that the space L(V, W) is finite dimensional and has dimension mn.
- 6. Let T be a linear operator on a finite dimensional space V. Let $c_1,..., c_k$ be the distinct characteristic values of T and let W_i be the null space of $(T c_iI)$. Prove that the following are equivalent:
 - (i) T is diagonalizable.
 - (ii) The characteristic polynomial for T is $f = (x c_1)^{d_1} \dots (x c_k)^{d_k}$ and dim $W_i = d_i, i = 1, \dots, k$.
 - (iii) $\dim W_1 + \ldots + \dim W_k = \dim V.$
- 7. State and prove Primary Decomposition theorem.