

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March, 2021

CHE/CHS	3616/3522	PHYSICAL CHEMISTRY-V		Max: 75 mks Time: 2 hrs
SECT	ION A	Answer ANY FIVE questions ((5 X 15 = 75)
1.	-	for moment of inertia for rigid c sition from $J = 0 \rightarrow J = 1$ and $\mathbf{\ddot{v}} J$		es.
2.	for linear molecules.	occurrence of stokes and anti-stok		n spectra (10) (5)
3.	(b) Give the principle nuclei with exam	ple of EPR and arrive at the Boh of NMR and discuss about NMI ples. ard used for NMR? Why it is pres	R active and inact	
4.	. ,	and Raman active modes for wate group. State rearrangement theor s of a group.		(10) (1+1+3)
5.	(b) Distinguish betwee	nemiluminescence and photosens een thermal and photochemical re Stark-Einstein law of photochem	eactions.	(6) (6) ? (3)
6.	 (b) Calculate the ESF of 0.33T, given the control of 0.33T, given the σ(xz)xσ 	Franck-Condon principle. R frequency of an unpaired electronate for the free electron, $g_e = 2$ and $a_{(xy)} = \sigma_{(xy)} x \sigma_{(xz)} = C_{2(x)}$ for with reference to a three level	$\mu_{\rm B} = 9.273 X 10$	- ²⁴ JT ⁻¹ (3) (3)
7.	(b) Explain the break of rotations and v(c) In detail explain t	equency of ¹⁹ F is 40.06 MHz. Cal down of Born-Oppenheimer app ibrations in detail. he various photophysical process action using Jablonski diagram.	roximation, intera	
	(d) The molar extinct 12,00 dm ³⁺ mol ⁻¹ Calculate the min	ion coefficient of phenanthroline cm ⁻¹ and the minimum detectabl imum concentration of the comp law cell of path length 1.00 cm.	le absorbance is 0	(II) is 0.01.

CHARACTER TABLES

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$