

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

PGM 5433 MEASURE THEORY

TIME: 3 hrs

Max.Marks: 75

 $5 \times 15 = 75$

Answer any FIVE questions

1. For any set A , prove that there exists a measurable set E containing A such that

 $m^{*}(A) = m^{*}(E)$

2. Prove that the existence of non measureable set.

3. If $\{f_n\}_{n=1}^{\infty}$ is a sequence of non negative measurable functions such that $\{f_n(x)\}_{n=1}^{\infty}$ for each 'x' and $f = lt f_n$, then prove that $\int f dx = lt \int f_n dx$

4.) If f is Riemann integrable and bounded over the finite interval [a, b], then prove

that f is integrable and $R \int_{a}^{b} f dx = \int_{a}^{b} f dx$

5. Prove that the space C[a, b] is dense in $L_1[a, b]$

6. Show that S^* forms a σ -Ring

7.State and prove Hahn Decomposition Theorem (Prove the necessary result). Is the decomposition unique? Justify