

THE AMERICAN COLLEGE, MADURAI (An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

PGC :		Max: 75 mks Time: 3 hrs
SECT	ION A Answer ANY FIVE questions	(5 X 15 = 75)
1.	a) What are the assumptions of the collision theory of reaction rate?	
	How does collision theory predict the rate of a reaction?	(10)
	b) Derive Eyring equation.	(5)
2.	a) Derive Deby-Huckel-Onsager equation.	(6)
	b) Discuss about ion-ion interaction in solution.	(4)
	c) Explain Oscillatory reaction with a suitable example.	(5)
3.	a) How will you employ conductivity measurements to find the solubilit	y product of a
	sparingly soluble salt?	(5)
	b) Derive an expression for Zeta potential.	(6)
	c) How are hydrated electron generated? Mention its characteristics.	(4)
4.	What are concentration cells? Derive and explain liquid junction potenti	al.
5.	Derive and discuss the various outcome of Butler-Volmer expression.	
6.	6. a) What is diffusion controlled reaction? Discuss the kinetics of different types of	
	diffusion controlled reactions.	(10)
	b) Explain the determination of transport number using moving boundar	ry method. (5)
7.	a) Based on statistical mechanics, discuss the theory of absolute reaction	n rates. (5)
	b) Derive a expression for excited state pKa of a molecule.	(5)
	c) Discuss the applications of emf measurements.	(5)