

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/ MAS 1441 / 1631

Calculus

Time: 3 Hrs

Answer any FIVE questions:

- (5 X 15 = 75 Marks)
- 1. Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 2. Discuss the maxima and minima of the function $x^3y^2(6-x-y)$.
- 3. If $\int_{0}^{\frac{\pi}{2}} \cos^{m} x \cos nx dx = f(m, n)$ then prove that $f(m, n) = \frac{m}{m+n} f(m-1, n-1)$.

$$f(n,n) = \frac{\pi}{2^{n+1}}$$
.

- 4. Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ and hence evaluate $\Gamma(1/2)$.
- 5. Evaluate $\iiint_{D} xyzdxdydz$ where D is the positive octant of the sphere $x^2 + y^2 + z^2 = 1$.
- 6. By transforming into polar co-ordinates evaluate $\iint \frac{x^2y^2}{x^2 + y^2} dx dy$ over the region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ (b > a).
- 7. (i) Prove that the radius of curvature at any point of the catenary $y = c \cosh \frac{x}{c} is \frac{y^2}{c}$.
 - (ii) If $U = \tan^{-1} \frac{x^3 + y^3}{x y}$, prove that $x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} = \sin 2U$.