

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT MAS 3445	TIME: 3hrs
NUMERICAL ANALYSIS	MARKS: 75

5x15=75

ANSWER ANY FIVE QUESTIONS:

- 1. Find a real root of the equation $x^3 3x + 1 = 0$ lying between 1 and 2 correct to three places of decimal by using bisection method.
- 2. Find the real root of $xe^x 2 = 0$ correct to three places of decimals using Newton-Raphson method.
- 3. Find the inverse of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ using Gaussian method.
- 4. Determine the largest eigen value and the corresponding eigen vector of the matrix $\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$
- 5. A function y = f(x) is given by the following table. Find f(0,2) by using Newton's forward interpolation formula.

x	0	1	2	3	4	5	6
y = f(x)	176	185	194	203	212	220	229

- 6. Using Runge-Kutta method of fourth order find y(0,1), y(0,2) and y(0,3) given that $\frac{dy}{dx} = 1 + xy$; y(0) = 2.
- 7. Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule (ii) Simpson one third rule.