

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2^{nd} Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 2443/2603/233/2633	Real Analysis - I	MAX: 75 marks
		TIME: 3 hours

 $5 \times 15 = 75$

Answer Any FIVE of the following questions

- 1. If $\{S_n\}_{n=1}^{\infty}$ is a sequence of real numbers prove that $\lim_{n \to \infty} \inf S_n \le \lim_{n \to \infty} \sup S_n$.
- 2. State and prove comparison test for series of positive terms.
- 3. Let M be a metric space. Prove that M is complete iff for every sequence (F_n) of nonempty closed subsets of M such that $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ and $(d(F_n)) \to 0$ and $\bigcap_{n=1}^{\infty} F_n$ is non empty.
- 4. State and prove Nested interval theorem.
- 5. (i) Show that f(x) = |x| + |x 1| is continuous at x = 0 and x = 1.
 (ii) If a function f is continuous in an interval [a, b] and f(a) ≠ f(b), then prove that f assumes every value between f(a) and f(b).
- 6. Prove that any closed interval [*a*, *b*] is a compact subset of R.
- 7. (i) State and prove Rolle's theorem(ii) State and prove Mean value theorem.