

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 1431/1551 Time: 3 Hrs

MATHS FOR PHYSICS- I

Marks: 75

Answer any Five questions (5×15=75)

- 1. Determine f(r) so that the vector $\{f(r)r\}$ both solenoidal and irrotational.
- 2. Verify stoke's theorem when $F = (2x y)i yz^2 j y^2 zk$ where S is the upper hemisphere of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 3. Find the eigen values and eigen vectors of the matrix $\begin{vmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{vmatrix}$.
- 4.If $u + v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + iv find the analytic function of f(z)5. Evaluate $\int_{0}^{2\pi} \frac{d\theta}{5 + 4\sin\theta}$ by using Contour integration.
- 6. (a) Prove that $F = (y^2 \cos x + z^3)i + (2y \sin x 4)j + (3xz^2 + 2)k$ is irrotational and find its scalar potential.

(b) Show that the equations x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30 are consistent and solve them.

7. (a) Evaluate $\int_{C} \frac{e^{z}}{z^{2}+4} dz$ where C is |z-i| = 2 using Cauchy's Integral formula. (b) Evaluate $\int_{C} \frac{dz}{2z+3}$ where C is |z| = 2 using Cauchy's Residue theorem.