THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

Course : Numerical Methods	Date : 06/03/21
Course Code : COS 205	Time : 3 hrs
Answer any 5 out of 7 :	(5 X 15 = 75)
1 . Find a real root of the equation $x^3 - x - 11 = 0$ by using bisection	n method.
2. Find the real root lying between 1 and 2 of the equation $x^3 - 3x + 3$	-1 = 0 upto
3 places of decimals by using Regula – falsi Method.	
3. Find the inverse of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$ using Gauss Elim	ination Method.

4. The following data gives the melting point of an alloy of zinc and lead. θ is the

temperature and x is the percentage of lead,

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

(i) By using Newton's forward interpolation formula, find $\theta = 48$

- (ii) By using Newton's Backward interpolation formula, find $\theta = 84$.
- 5. Using the following table,
- (a) Apply Gauss forward interpolation formula, to get f(3.75)

	x	2.5	3.0	3.5	4.0	4.5	5.0
f	$f(\mathbf{x})$	24.145	22.043	20.225	18.644	17.262	16.047

(b) Apply Gauss backward interpolation formula to find y (25) for the following data,

x	20	24	28	32
у	2854	3162	3544	3992

- 6. Evaluate $\int_0^1 \frac{dx}{1+x}$ using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rd rule
 - (iii) Simpson's $\frac{3}{8}$ rule (iv) Weddle's rule (v) Find the error in each method by comparing with the actual integration upto 4 places of decimals.

Take $h = \frac{1}{6}$ for all cases.

7. Using Runge – Kutta method of fourth order find y (0.1); y(0.2) and y(0.3), Given that $\frac{dy}{dx} = 1 + xy$; y (0) = 2.