

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT 153

Max: 75 marks

Foundation Mathematics II

Time: 3 hrs

Answer any five questions: $5 \times 15 = 75$ marks

- a) Solve the equation x⁴ 2x³ + 4x² + 6x 21 = 0 given that two of its roots are equal in magnitude and opposite in sign.
 b) If the sum of two roots of the equation x⁴ + px³ + qx² + rx + s = 0 equals the sum of the other two, prove that p³ + 8r = 4pq.
- 2. Use Newton's method of divisors to find all the rational roots of the equation $4x^3 + 20x^2 - 23x + 6 = 0$
- 3. a) If x, y, z be three consecutive integers, show that (∑x)³ 3∑x³ is divisible by 108.
 b) Find the highest power of 3 dividing 1000!.
- a) If p is a prime and a is any number prime to p then show that a^{p−1} − 1 is divisible by p.
 - b) Show that (18)! + 1 is divisible by 437.
- 5. a) If x and y are positive quantities whose sum is 4, show that

$$\left(x+\frac{1}{x}\right)^2 + \left(y+\frac{1}{y}\right)^2 \ge 12\frac{1}{2}$$

b) Show that if *a*, *b*, *c* are positive unequal quantities then

 $ax^{b-c} + bx^{c-a} + cx^{a-b} > a + b + c$.

- 6. a) State and prove Weirstrass inequalities.
 b) Find the maximum value of (3 x)⁵(2 + x)⁴ when x lies between 3 and -2
- 7. Sum the series $\frac{2}{1.4.5} + \frac{3}{2.5.6} + \frac{4}{3.6.7} + \cdots$ to n terms.