

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2nd Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

Backlog Arrear Examination, March 2021

MAT/MAS 2511 / 251 ALGEBRA II	TIME: 3 HRS MAX: 75
ANSWER ANY FIVE QUESTIONS	<u>5×15 = 75</u>
1. Prove that z_n is a field iff n is prime.(Prove necessary lemma)	

- 2. Let R be a commutative ring with identity. Prove that an ideal of R is maximal iff R/M is a field.
- 3. Prove that any integral domain D can be embedded in a field F and every element of F can be expressed as a quotient of two elements of D.
- 4. Let *R* and *R'* be rings and $f: R \to R'$ be an isomorphism. Prove the following:
 - (i) *R* is commutative \Rightarrow *R*'is commutative
 - (ii) R is ring with identity $\Rightarrow R'$ is a ring with identity
 - (iii) R is an integral domain $\Rightarrow R'$ is an integral domain
 - (iv) R is a field \Rightarrow R' is a field.
- 5. Prove that any Euclidean domain R is a U.F.D (prove necessary lemma)
- 6. (a) State and prove Division algorithm.
- 7. (a) Show that in any distributive lattice $(a \lor b) \land (b \lor c) \land (c \lor a) = (a \land b) \lor (b \land c) \lor (c \land a)$.
 - (b) Prove that the lattice of normal subgroup of any group is a modular lattice.