

THE AMERICAN COLLEGE, MADURAI

(An Autonomous Institution Affiliated to Madurai Kamaraj University) Re-accredited (2<sup>nd</sup> Cycle) by NAAC with Grade "A", CGPA – 3.46 on a 4-point scale

## Backlog Arrear Examination, March 2021

MAT/ MAS 1511 / 1443 / 1633 / 135 Classical Algebra

**Duration: 3 Hrs** 

Marks: 75

5\*15=75

## Part-A

Answer any five questions:

- 1. Solve the equation  $27x^3 + 42x^2 28x 8 = 0$  whose roots are in geometric progression.
- 2. Using Horner's method, find the real root of the equation  $x^3 3x + 1 = 0$  which lies between 1 and 2 correct to three places of decimals.
- 3. Sum the series  $\frac{2}{1.4.5} + \frac{3}{2.5.6} + \frac{4}{3.6.7} + \dots$  ton terms.
- 4. State Cayley Hamilton's theorem and hence find  $A^4$  and  $A^{-1}$  for the matrix
  - $\mathbf{A} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix}$

5. Find the Eigen values and Eigen vectors of the matrix  $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ .

6. a) Find the condition that the general biquadratic equation ax<sup>4</sup> + 4bx<sup>3</sup> + 6cx<sup>2</sup> + 4dx + e = 0 may have two pairs of equal roots.
b) If α, β, γ are the roots of the equation x<sup>3</sup> + px<sup>2</sup> + qx + r = 0, Find the

equation whose roots are  $\beta + \gamma - 2\alpha$ ,  $\gamma + \alpha - 2\beta \alpha + \beta - 2\gamma$ .

7. a) Show that  $\frac{5}{1.2.3} + \frac{7}{3.4.5} + \frac{9}{5.6.7} + \dots + \cos = 3\log 2 - 1$ 

b) State and prove Weierstrass inequality.